BBA 72979

The reaction of Mg²⁺ with the Ca²⁺-ATPase from human red cell membranes and its modification by Ca²⁺ *

Ariel J. Caride, Alcides F. Rega and Patricio J. Garrahan

Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires (Argentina)

(Received 26 June 1986)

Key words: Ca²⁺-ATPase; Mg²⁺ activation; Ca²⁺; (Erythrocyte membrane)

(1) Media prepared with CDTA and low concentrations of Ca^{2+} , as judged by the lack of Na^+ -dependent phosphorylation and ATPase activity of $(Na^+ + K^+)$ -ATPase preparations are free of contaminant Mg^{2+} . (2) In these media, the Ca^{2+} -ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca^{2+} -ATPase activity is present. (3) In the absence of Mg^{2+} the rate of phosphorylation in the presence of $1 \mu M Ca^{2+}$ is very low but it approaches the rate measured in Mg^{2+} -containing media if the concentration of Ca^{2+} is increased to 5 mM. (4) The K_{Ca} for phosphorylation is 2 μM in the presence and 60 μM in the absence of Mg^{2+} . (5) Results are consistent with the idea that for catalysis of phosphorylation the Ca^{2+} -ATPase needs Ca^{2+} at the transport site and Mg^{2+} at an activating site and that Ca^{2+} replaces Mg^{2+} at this site. (6) Under conditions in which it increases the rate of phosphorylation, Ca^{2+} is without effect on the Ca^{2+} -ATPase activity in the absence of Mg^{2+} suggesting that to stimulate ATP hydrolysis Mg^{2+} accelerates a reaction other than phosphorylation. (7) Activation of the E_1P - E_2P reaction by E_2P reaction by E_2P stabilizes E_1P in a state from which E_2P - E_2P reaction by E_2P reaction by E_2P reaction by E_2P reaction by E_2P stabilizes E_1P in a state insensitive to E_2P - E_2P reaction by E_2P reaction is biphasic, activation with a E_2P - $E_$

Introduction

We have proposed [1] that under conditions similar to those in an intact cell (0.4 mM Mg²⁺ and 1 to 1.5 mM ATP) ATP hydrolysis by the Ca²⁺-ATPase from human erythrocyte mem-

Correspondence: Dr. A.F. Rega, Instituto de Química y Fisico química Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina.

branes proceeds through the following pathway:

$$E_1 + ATP \xrightarrow{Ca^{2+},Mg^{2+}} E_1P + ADP \tag{1}$$

$$E_1 P \xrightarrow{Mg^{2+}} E_2 P \tag{2}$$

$$E_2P \xrightarrow{ATP} E_2 + P_i \tag{3}$$

$$E_2 \rightarrow E_1$$

where E_1 and E_2 are different conformers of the Ca^{2+} -ATPase. The scheme assumes that only the

^{*} Dedicated to Dr. Luis F. Leloir on the occasion of his 80th birthday, September 6, 1986.

E₂P conformer of the phosphoenzyme undergoes hydrolysis at a significant rate and that the rate of this reaction is accelerated by ATP. In media without added Mg²⁺ reaction [1] takes place slowly but the steady-state level of the phosphoenzyme is similar to that in media with Mg²⁺ [1]. This has been taken as evidence that Mg²⁺ is not essential for phosphorylation. However, as the $K_{0.5}$ for Mg²⁺ during this reaction is in the micromolar range [2], and nominally 'Mg-free' suspensions of membranes in isotonic salt solutions contain in fact 2-4 µM Mg²⁺, the possibility that contaminant Mg²⁺ is involved in Ca²⁺-dependent phosphorylation has to be considered. The sources of contaminant Mg²⁺ are the inorganic salts, most of which contain small amounts of magnesium as an impurity and the magnesium that the membranes may carry. The first experiments in this paper were designed to reexamine the requirements of Mg²⁺ for the formation of the phosphoenzyme of the Ca²⁺-ATPase in conditions under which contaminant Mg2+ was reduced to negligible levels.

We have also studied the effects of Mg^{2+} on dephosphorylation. The reaction scheme implies that the only effect of Mg^{2+} on this reaction is to promote the conversion of E_1P into E_2P . Results in this paper show that this effect depends on Ca^{2+} concentration.

It has been reported that the response of Ca²⁺-ATPase activity to Mg²⁺ concentration is biphasic. There is a small but significant Ca²⁺-ATPase activity in media containing no added Mg²⁺. The activity increases as Mg²⁺ concentration raises, reaches a maximum at about 1 mM Mg²⁺ and then drops [3,4]. According to Graf and Penniston [3] activation of the Ca²⁺-ATPase is exerted by combination of Mg²⁺ at a site in the enzyme, and as proposed by Penniston inhibition of the enzyme is due to displacement of Ca²⁺ [4]. Experiments in this paper also reexamine in detail the degree of dependence on Mg²⁺ of the Ca²⁺-ATPase and the kinetics of its activation and inhibition by this cation.

Materials and Methods

Mg²⁺-depleted red cell membranes were obtained following the procedure of Gietzen et al. [5]

modified as follows: 1 vol. of packed erythrocytes was mixed at 0°C with 15 vol. of a lysing buffer containing 1 mM CDTA, 15 mM Tris-HCl (pH 7.7 at 20°C) and the suspension was centrifuged at $25\,000 \times g$ during 20 min. The pellet was resuspended in 15 vol. of the lysing buffer, collected by centrifugation, and then resuspended in 15 vol. of the same buffer. The suspension was incubated 30 min at 37°C and then centrifuged at $25000 \times g$ during 20 min at 4°C. The incubation at 37°C was repeated once and then the pellet was resuspended in 15 vol. of 15 mM imidazole-HCl (pH 7.65 at 25°C), 5 µM CaCl₂ and the suspension centrifuged at 25 000 × g during 20 min. The final pellet was resuspended in a small volume of 15 mM imidazole-HCl (pH 7.65 at 25°C), 5 μM CaCl₂ and stored at -20°C until used. Red cell membranes prepared following the procedure of Garrahan et al. [6] except that 2 mM EGTA replaced 1 mM EDTA in the lysing solution were also used.

 $(Na^+ + K^+)$ -ATPase was purified from pig kidney by the simpler of the two procedures described by Jørgensen [7]. $[\gamma^{-32}P]$ ATP was prepared according to the method of Glynn and Chappel [8], except that no orthophosphate was added. $[^{32}P]$ Orthophosphate was provided by Comisión Nacional de Energía Atómica, Argentina. Calmodulin was purified from bovine brain by the procedure of Kakiuchi et al. [9]. Compound 48/80, ATP, ouabain, enzymes and cofactors for the synthesis of $[\gamma^{-32}P]$ ATP were obtained from Sigma (U.S.A.). Salts and reagents were of analytical reagent grade.

To study activities in Mg²⁺-free media, contaminant Mg²⁺ was reduced using solutions with low salt concentration and containing 5 mM CDTA. Throughout this paper these solutions will be called 'CDTA media'. Details of their composition are given below and in Results. Ca²⁺-ATPase activity was measured at 37°C in media with the composition described in Results. Ca²⁺-ATPase activity was the difference between the activity in these media and the activity in media of identical composition but without CaCl₂. (Na⁺ + K⁺)-ATPase activity was measured at 37°C in media containing 50 mM imidazole-HCl (pH 7.4 at 37°C), 5 mM CDTA, 0.01 mM [γ-³²P]ATP, 20 mM NaCl, 5 mM KCl, enough CaCl₂ for 1 μM

Ca²⁺ (final concentration) with and without 5 mM MgCl₂. (Na⁺ + K⁺)-ATPase activity was taken as the difference between the activity in the above-mentioned media and the activity measured in the same media with 0.5 mM ouabain. In all the experiments in which ATPase activities were measured the amount of red cell membranes in the assay medium was the equivalent to 0.1 mg of membrane protein per ml. Activities were estimated from the release of $[^{32}P]P_i$ from $[\gamma - ^{32}P]ATP$ [10], Ca²⁺-dependent phosphorylation was performed as described previously in media with the composition given in Results. The level of Ca2+dependent phosphoenzyme was taken as the difference between the amount of ³²P incorporated to the membrane protein in media with CaCl₂ and in media of identical composition except that CaCl₂ was omitted. Na⁺-dependent phosphorylation of red cell membranes was performed as described previously. When purified (Na⁺ + K⁺)-ATPase was used, the level of Na⁺-dependent phosphoenzyme was measured according to Fukushima and Post [11]. Either the red cell membranes or the purified enzyme were incubated at 0°C during 1 min in 50 mM imidazole-HCl (pH 7.4 at 0°C), 25 mM NaCl, 5 mM CDTA, 0.01 mM $[\gamma^{-32}P]ATP$ with and without 5 mM MgCl₂. CaCl₂ was omitted to prevent activation of the Na+-dependent phosphorylation by Ca²⁺ [11,12]. Na⁺dependent phosphoenzyme was taken as the difference between the level of phosphorylation in the above media and in media of identical composition except that 25 mM KCl replaced NaCl. The amount of red cell membranes in the phosphorylation experiments was the equivalent to 2 mg of membrane protein per ml.

The rate of dephosphorylation was measured by adding to labelled phosphoenzyme in 0.4 ml of incubation media, 0.1 ml of incubation media containing 5 mM unlabelled ATP plus enough of MgCl₂, CaCl₂ and EGTA to reach the final concentrations of Ca²⁺ and Mg²⁺ that are indicated in Results. The reaction was terminated and the level of phosphoenzyme was measured as described [2]. The values of the rate constants for dephosphorylation were calculated assuming first-order kinetics.

Ca²⁺ (free ionized calcium) concentration in the media was estimated with a Ca²⁺-selective

electrode [13]. Protein concentration was estimated by the procedure of Lündahl [14]. The apparent dissociation constant for the complexes of CDTA, EGTA and ATP with Ca2+ or Mg2+ under the experimental conditions used during the assays were estimated measuring at 37°C the concentration of Ca2+ in solutions of composition similar to those used in the experiments and containing a fixed concentration of chelator and several concentrations of CaCl₂ in the absence and in the presence of various concentrations of MgCl₂. Calculations were performed adjusting to the experimental points by non-linear regression an equation derived assuming equilibrium among Ca²⁺, Mg²⁺ and the chelators. The values thus obtained were: $K_{\text{ATP-MG}} = 50 \ \mu\text{M}, \ K_{\text{ATP-Ca}} = 120$ μ M, $K_{EGTA-Mg} = 13420 \mu$ M, $K_{EGTA-Ca} = 0.26 \mu$ M in 100 mM KCl/50 mM imidazole-HCl (pH 7.4 at 37°C) and $K_{\text{ATP-Ca}} = 25~\mu\text{M}$, $K_{\text{CDTA-Mg}} = 1.27~\mu\text{M}$ and $K_{\text{CDTA-Ca}} = 0.022~\mu\text{M}$ in 75 mM imidazole-HCl (pH 7.4 at 37°C).

Using these values, the total concentrations of CaCl₂ and MgCl₂ necessary to attain a given concentration of free calcium ([Ca²⁺]) and free magnesium ([Mg²⁺]) were calculated by means of the following equations:

$$[CaCl_{2}] = [Ca^{2+}] + \frac{Q_{i}}{1 + \frac{K_{Q_{i}Ca}}{[Ca^{2+}]} \left(1 + \frac{[Mg^{2+}]}{K_{Q_{i}Mg}}\right)}$$
(4)

$$[MgCl_{2}] = [Mg^{2+}] + \frac{Q_{i}}{1 + \frac{K_{Q_{i}Mg}}{[Mg^{2+}]} \left(1 + \frac{[Ca^{2+}]}{K_{Q_{i}Ca}}\right)}$$
(5)

where Q_i represents the chelator concentration and K_{Q_iCa} and K_{Q_iMg} the apparent dissociation constants for the complexes chelator-Ca and chelator-Mg, respectively.

Theoretical equations were adjusted to the experimental results by least-squares non-linear regression using the procedure of Gauss-Newton with optional damping [15].

Results

The presence of Mg²⁺ in the reaction media

The first experiments were designed to determine if CDTA-media actually are free of Mg²⁺.

TABLE I

CONTROL OF THE ABSENCE OF ${\rm Mg}^{2+}$ IN CDTAMEDIA ON THE BASIS OF THE ${\rm Na}^+$ -DEPENDENT PHOSPHORYLATION AND THE ATPase ACTIVITY OF THE (${\rm Na}^+ + {\rm K}^+$)-ATPase

The media used to assay the (Na $^+$ + K $^+$)-ATPase activity contained 1 μM Ca 2 $^+$

MgCl ₂ (mM)	Na ⁺ -deper phosphory (pmol/mg	lation	(Na ⁺ + K ⁺)-ATPase activity (nmol/mg protein per min)
	Purified enzyme	Red cell membranes	Red cell membranes
0 5		$0.003 \pm 0.031 \\ 0.153 \pm 0.045$	

With this purpose we measured Na⁺-dependent phosphorylation of the (Na⁺ + K⁺)-ATPase by ATP in CDTA-media. This reaction requires Mg²⁺ at micromolar concentrations. Results in Table I show that in these media neither purified (Na⁺ + K⁺)-ATPase from kidney nor Mg²⁺-depleted red cell membranes are phosphorylated by $[\gamma^{-32}P]$ ATP unless MgCl₂ is added. This suggests that the CDTA medium does not contain Mg²⁺ and that Mg²⁺-depleted red cell membranes do not add Mg²⁺ to the assay medium.

Since Na+-dependent phosphorylation was measured in the absence of Ca²⁺, it could be argued that when CaCl₂ is added this salt carries enough contaminant Mg^{2+} and/or displaces chelated Mg²⁺ as to invalidate the conclusion reached above. The Na+-dependent phosphorylation reaction cannot be used to detect Mg²⁺ in the presence of Ca²⁺ because Ca²⁺ replaces Mg²⁺ as a cofactor for this reaction [11,12]. In addition in red cell membranes Ca2+ will also promote phosphorylation of the Ca²⁺-pump. For this reason we used (Na++K+)-ATPase activity instead of Na+-dependent phosphorylation to test the presence of Mg²⁺ in Ca²⁺-containing CDTAmedia. Results in Table I show that in CDTA media containing enough CaCl2 as to leave 1 µM free Ca^{2+} , the $(Na^+ + K^+)$ -ATPase activity is not significantly different from zero unless MgCl₂ is added. In view of this, it seems reasonable to conclude that if Mg²⁺ remained in CDTA-media,

its concentration would be below that necessary to produce any detectable effect.

Phosphorylation of the Ca^{2+} -ATPase in the absence of Mg^{2+}

To see if Mg^{2+} is required for the formation of the phosphoenzyme of the Ca^{2+} -ATPase, Ca^{2+} -dependent phosphorylation of red cell membranes by ATP was measured as a function of the reaction time in CDTA-media containing 1 μ M Ca^{2+} .

Results in Fig. 1 show that the amount of Ca^{2+} -dependent phosphoenzyme increases with a $t_{1/2}$ of about 1.5 min tending to a value similar to the amount of phosphoenzyme formed in a medium with 5 mM MCl_2 during 1 min, time enough for the phosphoenzyme to reach its maximum level in such medium. In view of this, it can be concluded that although Mg^{2+} accelerates phosphorylation of the Ca^{2+} -ATPase by ATP, it is not an essential cofactor for the reaction.

Effects of Ca^{2+} on the phosphorylation reaction in the presence and absence of Mg^{2+}

Fig. 2 shows the results of an experiment in which the amount of Ca²⁺-dependent phosphoenzyme was measured as a function of the

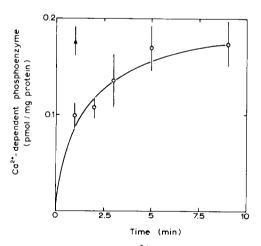


Fig. 1. Time course of Ca^{2+} -dependent phosphorylation of Mg^{2+} -depleted red cell membranes in CDTA-media without added Mg^{2+} (\bigcirc). For comparison the level of phosphorylation in the presence of 5 mM MgCl_2 (370 μM Mg^{2+}) is shown (\triangle). Phosphorylation was performed at 0 °C in media containing 75 mM imidazole-HCl (pH 7.4 at 0 °C), 5 mM CDTA, 0.01 mM (γ -³²P)ATO, enough CaCl₂ for 1 μ M Ca²⁺ with and without MgCl₂.

concentration of Ca2+ in media with and without Mg²⁺. In the presence of Mg²⁺, Ca²⁺ increases phosphorylation with a K_{Ca} near 2 μ M, a value which is similar to the $K_{0.5}$ for the effects of Ca²⁺ at the transport site of the Ca²⁺-ATPase while in the absence of Mg²⁺ the level of phosphoenzyme increases with Ca²⁺ along a rectangular hyperbola which is half-maximal at 60 μM Ca²⁺. To study further the effects of Ca²⁺ on the phosphorylation reaction we have followed the time course for the formation of the Ca²⁺-dependent phosphoenzyme in media without Mg²⁺ and with either 50 or 5000 μM Ca²⁺. Results in Fig. 3 show that in the presence of 50 µM Ca²⁺ the Ca²⁺-ATPase can be phosphorylated by ATP to a maximum level of 1.00 pmol/mg with a $t_{1/2}$ of 13.3 s. On increasing the concentration of Ca²⁺ to 5000 µM the maximum level of phosphoenzyme raises up to 2.2 pmol/mg and $t_{1/2}$ is reduced to 4.6 s. Results (not shown) demonstrated that $t_{1/2}$ for dephosphorylation of phosphoenzyme made in 50 and 5000 µM Ca²⁺ was 3.6 and 3.8 s, respectively. It is clear therefore that increasing the concentration of Ca²⁺ increases the rate of formation and the level of Ca²⁺-dependent phosphoenzyme.

Effects of Ca^{2+} on dephosphorylation of phosphoenzyme formed in the absence of added Mg^{2+}

The rate of hydrolysis of phosphoenzyme made in media containing no added MgCl, and various concentrations of Ca²⁺ was measured during 3 s in media with 1 mM ATP, 0.5 mM Mg²⁺ and different concentrations of Ca2+ and compared with the rate of hydrolysis of phosphoenzyme made in medium containing 0.5 mM Mg²⁺. Results in Table II show that phosphoenzyme made in 50 µM Ca²⁺ dephosphorylates at a low rate in media containing 50 μM Ca²⁺. Phosphoenzyme made in 15 µM Ca²⁺ dephosphorylates at a normal rate in a medium with 10 M Ca²⁺ but at a low rate in medium with 50 µM Ca²⁺. Table II also shows that phosphoenzyme made in 100 µM Ca²⁺ undergoes rapid hydrolysis in medium with enough EGTA to lower the concentration of Ca²⁺ to less than 1 µM. From these results it seems clear that provided the phosphoenzyme is made in media without added Mg²⁺, 50 µM Ca²⁺ in the dephosphorylation media blocks the ability of Mg²⁺ to accelerate hydrolysis in a way that is

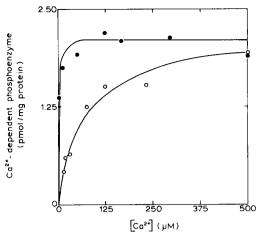


Fig. 2. ${\rm Ca^{2+}}$ -dependent phosphorylation as a function of ${\rm Ca^{2+}}$ concentration in the absence (\odot) and in the presence of 0.5 mM Mg²⁺ (\bullet). Membranes were prepared by the procedure of Garrahan et al. [6] modified as described in Materials and Methods. Phosphorylation was carried out at 0°C during 40 s in media containing 50 mM imidazole-HCl (pH 7.4 at 37°C), 100 mM KCl, 0.5 mM EGTA, 0.01 mM [γ -³²P]ATP and enough CaCl₂ to obtain the concentrations of Ca²⁺ indicated in the figure with and without MgCl₂.

independent of the concentration of Ca^{2+} during phosphorylation. A possible explanation for the observed effect of Ca^{2+} is that in the presence of Ca^{2+} it takes a longer time for Mg^{2+} to accelerate dephosphorylation than in its absence. To see if this is the case, the time course of hydrolysis of phosphoenzyme formed in medium with 50 μM

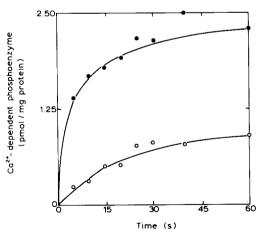


Fig. 3. Time course of Ca^{2+} -dependent phosphorylation at 0°C in the presence of 50 μ M (\bigcirc) or 500 μ M (\bigcirc) Ca^{2+} . Other conditions are those described in the legend to Fig. 2.

TABLE II EFFECTS OF Ca^{2+} ON THE RATE OF DEPHOSPHORY-LATION OF THE PHOSPHOENZYME

Membranes were prepared by the procedure of Garrahan et al. [6] modified as described in Materials and Methods. Phosphorylation was carried out as described in the legend to Fig. 2. All dephosphorylation media contained 500 μ M Mg²⁺ (* 160 μ M CaCl₂ plus 1.1 mM EGTA). The rate constant for dephosphorylation of phosphoenzyme made in 50 μ M Ca²⁺ and dephosphorylated in medium containing 50 μ M Ca²⁺ and no added MgCl₂ was 0.230 s⁻¹.

Ca ²⁺ concentrati	Rate constant for	
During phosphory- lation	During dephosphorylation dephosphorylation (s ⁻¹)	
50	50	0.220
15	10	0.508
15	50	0.257
100 50 plus	<1 *	0.451
$500 \mu M Mg^{2+}$	50	0.604

 Ca^{2+} was followed during 10 s (instead of 3 s as in Table II) in a medium with 50 μ M Ca^{2+} and 0.5 mM Mg^{2+} . Results in Fig. 4 show that in a 10

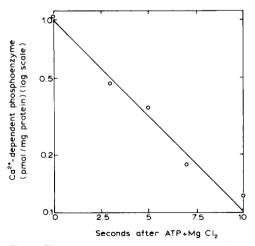


Fig. 4. Time course of dephosphorylation of phosphoenzyme prepared in the absence of added ${\rm Mg}^{2+}$. Phosphorylation was carried out at 0 °C in the presence of 50 $\mu{\rm M}$ Ca²⁺ in a total volume of 0.4 ml as described in the legend to fig. 2. At 40 s dephosphorylation was started adding 0.1 ml of incubation media containing 5 mM ATP and 7.5 mM MgCl₂. At the times shown, the reaction was stopped and the level of phosphoenzyme was measured as described previously [2].

s period almost 90% of the phosphoenzyme dephosphorylates at a constant and low rate (k =0.228 + 0.011 s⁻¹). In view of this finding, the lack of effect of Mg²⁺ on the dephosphorylation reaction in the presence of 50 µM Ca²⁺ can not be attributed to a lag in the effect of Mg²⁺ caused by Ca²⁺. After this, lack of acceleration by Mg²⁺ under the conditions of Table II could be attributed either to the displacement of Mg²⁺ from the phosphoenzyme by Ca²⁺ or to the inability of the phosphoenzyme to react with Mg²⁺ in media with Ca2+. To discriminate between these alternatives, the rate of dephosphorylation in media with 50 µM Ca²⁺ was measured in the presence of increasing concentrations of Mg²⁺. Results showed that for any of the conditions used the rate of dephosphorylation remained low, the rate constants for dephosphorylation being 0.227, 0.273, and 0.234 s^{-1} for 0, 0.5 and 19 mM Mg²⁺, respectively. This suggests that displacement of Mg²⁺ by Ca²⁺ is not the cause of the lack of acceleration by Mg²⁺. It seems therefore that in the presence of 50 µM Ca²⁺ the phosphoenzyme formed in the absence of Mg²⁺ is unable to react with Mg²⁺ to undergo rapid hydrolysis.

Effects of Ca^{2+} on dephosphorylation of the phosphoenzyme formed in media with Mg^{2+}

Phosphoenzyme was made in media containing 0.5 mM MgCl₂ plus various concentrations of Ca²⁺ and its rate of hydrolysis was measured with the results shown in Table III. Under these conditions the phosphoenzyme undergoes rapid hydrolysis even when the concentration of Ca²⁺ is raised to 5 mM. These results indicate that in sharp contrast with what happens after, if Mg²⁺ is present before or during phosphorylation Ca²⁺ is unable to impede it to accelerate the hydrolysis of the phosphoenzyme.

The dependence of the rate of dephosphorylation on the Mg^{2+} concentration during phosphorylation

Fig. 5 shows the effect of increasing Mg²⁺ concentration in the phosphorylation media on the rate constant for dephosphorylation. The rate of dephosphorylation increases along a curve that tends to saturation as the concentration of Mg²⁺ raises. The apparent dissociation constant for Mg²⁺ calculated from the equation of the curve

TABLE III

EFFECT OF Ca^{2+} ON THE RATE OF HYDROLYSIS OF THE PHOSPHOENZYME FORMED IN THE PRESENCE OF $M\varrho^{2+}$

Membranes were prepared by the procedure of Garrahan et al. [6] modified as described in Materials and Methods. Phosphorylation was carried out as described in the legend to Fig. 2. All the media contained 0.5 mM Mg²⁺. * The medium contained 0.44 mM CaCl₂ plus 10.5 mM EGTA.

Ca2+ concentr	ration (µM)	Rate constant for dephosphorylation (s ⁻¹)
During phosphory- lation	During dephosphory- lation	
50	very low *	0.762
50	50	0.604
500	500	0.758
5 0 0 0	5 000	0.624

that best fitted the experimental points is 117 ± 47 μ M.

Effect of Mg²⁺ on Ca²⁺-ATPase activity

Fig. 6 represents Ca²⁺-ATPase activity in the presence of 100 µM Ca2+ and 20 µM ATP as a function of the concentration of Mg²⁺ calculated as described in Methods and neglecting the contribution of the samll amounts of Mg²⁺ that may have been brought in as a contaminant. Results show that there is activity in nominally Mg²⁺-free medium. This confirms for intact membranes findings by Graf and Penniston [3] and Penniston [4] who used purified Ca2+-ATPase from red cell membranes. As the concentration of Mg²⁺ increases, the activity raises reaching a maximum at about 1 mM Mg²⁺. The inset in Fig. 6 indicates that activation of the Ca²⁺-ATPase by Mg²⁺ follows a simple hyperbolic curve. Increments in the concentration of Mg2+ above 1 mM lower the activity until at 20 mM Mg²⁺ it reaches a value about 70% the maximum. From the equation of the curve in Fig. 6 it can be calculated that the apparent dissociation constant for Mg²⁺ as activator ($K_{\rm Mg}$) is $87.8 \pm 3.7 \,\mu{\rm M}$ and the apparent dissociation constant for Mg²⁺ as partial inhibitor (K_i) is $9179 \pm 979 \mu M$. The fact that $K_{Mg} < K_i$ and that V_r is only half V_m (see legend to Fig. 6) explains why the initial part of the curve shown in

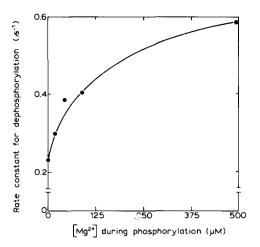


Fig. 5. Rate constant for dephosphorylation as a function of Mg²⁺ concentration in phosphorylation media. Membranes, prepared by the procedure of Garrahan et al. [6] modified as described in Materials and Methods, were phosphorylated as described in the legend to Fig. 2 in media with 50 μ M Ca²⁺ and the concentrations of Mg²⁺ indicated in the figure. At 40 s enough MgCl₂ and ATP were added to give a final concentration of 0.5 and 1 mM, respectively, and 3 s after, the reaction was stopped. The values of rate constants for dephosphorylation were calculated as it is described in Materials and Methods. The equation that fitted the experimental points was

$$k = \frac{(k_{\infty} - k_0)}{1 + (K_{Mg}/[Mg^{2+}])} + k_0$$
 (6)

where k_0 is the rate constant for dephosphorylation in the absence of Mg²⁺, k_{∞} is the rate constant for dephosphorylation in the presence of saturating concentration of Mg²⁺ and $K_{\rm mg}$ is the concentration of Mg²⁺ fro half-maximal effect. The values of the parameters (\pm S.E.) that gave the best fitting were $k_0 = 0.233 \pm 0.025 \ {\rm s}^{-1}$; $k_{\infty} = 0.659 \pm 0.055 \ {\rm s}^{-1}$ and $K_{\rm Mg} = 117 \pm 47 \ \mu{\rm M}$.

the inset of Fig. 6 can be adjusted by an equation like Eqn. 7, neglecting the inhibitory components.

Ca²⁺-ATPase activity in the absence of Mg²⁺

The activity observed at 0 mM added ${\rm Mg}^{2+}$ in the experiment in Fig. 6 rather than being the expression of the ${\rm Ca}^{2+}$ -ATPase in the absence of ${\rm Mg}^{2+}$, might be attributed to contaminant ${\rm Mg}^{2+}$. In fact, from the values of $V_{\rm m}$ and $K_{\rm Mg}$ in Fig. 6 it can be calculated that $16~\mu{\rm M~Mg}^{2+}$ present as contaminant in the incubation medium will give rise to the ${\rm Ca}^{2+}$ -ATPase activity measured in the medium without added ${\rm Mg}^{2+}$ in Fig. 6. To solve this uncertainty, we measured ${\rm Ca}^{2+}$ -dependent

ATP hydrolysis by Mg-depleted red cell membranes suspended in CDTA media. Results showed that under these conditions Ca²⁺-ATPase activity

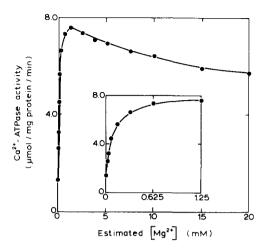


Fig. 6. Ca^{2+} -ATPase activity as a function of Mg^{2+} concentration in the presence of $100~\mu\text{M}$ Ca^{2+} . Membranes were prepared by the procedure of Garrahan et al. [6] modified as described in Materials and Methods. The incubation media contained 50 mM imidazole-HCl (pH 7.4 at 37°C), 100 mM KCl, 0.5 mM EGTA, 0.5 mM ouabain, 0.02 mM [γ -³²P]ATP plus enough CaCl_2 and MgCl_2 to obtain the final concentrations of Mg^{2+} indicated in the figure. The continuous line is the solution of the following equation.

$$v = V_0 + \frac{(V_m - V_0)}{1 + \frac{K_{Mg}}{[Mg^{2+}]} + \frac{[Mg^{2+}]}{K_i}} + \frac{(V_r - V_0)}{1 + \frac{K_i}{[Mg^{2+}]} \left(1 + \frac{K_{Mg}}{[Mg^{2+}]}\right)}$$
(7)

where V_0 is the activity without added MgCl₂ (0 mM Mg²⁺ in Fig. 6), $V_{\rm m}$ is the activity at saturating concentration of Mg²⁺ in the absence of inhibition, $V_{\rm r}$ is the activity when the concentration of Mg²⁺ tends to infinity, $K_{\rm Mg}$ and K_i are apparent dissociation constants for Mg²⁺ as activator and inhibitor, respectively. The best-fitting values of the parameters (\pm S.E.) were:

 $V_0 = 1.26 \pm 0.05 \text{ nmol/mg protein/min}$

 $V_{\rm m} = 8.46 \pm 0.09 \text{ nmol/mg protein/min}$ $K_{\rm Mg} = 87 \pm 3.7 \,\mu\text{M}$

 $V_r = 4.54 \pm 0.11 \text{ nmol/mg protein/min}$ $K_i = 9179 \pm 979 \mu M$

The inset is the initial part of the curve. The continuous line is the solution of Eqn. 7 neglecting the contribution of the inhibitory component. is 0.089 ± 0.012 nmol/mg protein per min compared with an activity of 0.936 ± 0.048 nmol/mg protein per min in the same medium but containing 5 mM MgCl₂.

Interaction of Mg^{2+} and Ca^{2+} at the Mg^{2+} activating site

 ${\rm Ca^{2+}}$ -ATPase activity was measured in media containing 20 $\mu{\rm M}$ ATP plus 50 to 990 $\mu{\rm M}$ Ca²⁺ as a function of Mg²⁺ concentration up to 1 mM. As judged by the K_i value calculated from the experiment in Fig. 6, under the conditions chosen the inhibitory effect of Mg²⁺ will be negligible. Results in Fig. 7 show that for all the concentrations of Ca²⁺ used activation by Mg²⁺ follows simple hyperbolic kinetics suggesting that Mg²⁺ activates acting at a single class of non-interacting sites. The inset to Fig. 7 shows that the concentra-

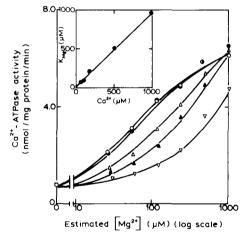
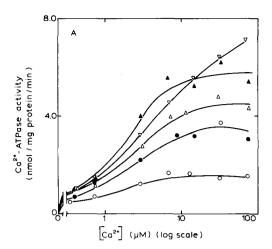


Fig. 7. Ca^{2+} -ATPase activity as a function of Mg^{2+} concentration (log scale) in the presence of 53 (∇), 103 (\triangle), 170 (\triangle), 443 (\bullet) and 990 (\bigcirc) μ M Ca^{2+} . Membranes were prepared by the procedure of Garrahan et al. [6] modified as described in Materials and Methods. Other conditions are described in the legend to Fig. 6. For each Ca^{2+} concentration the following equation was adjusted by non-linear regression

$$v = V_0 + \frac{(V_{\rm m} - V_0)}{1 + (K_{\rm Mg} / [{\rm Mg}^{2+}])}$$


The equation is based on the assumption that there is activity in the absence of Mg^{2+} (V_0) and that the effect of Mg^{2+} is excerted along a Michaelis-Menten-like equation that reaches its half-maximal value when the concentration of Mg^{2+} is equal to K_{Mg} . The inset is a plot of the best-fitting values of K_{Mg} against the concentration of Ca^{2+} .

tion of Mg^{2+} needed for half-maximal activation increases linearly with Ca^{2+} . This suggests that Ca^{2+} is a competitive inhibitor of the activation by Mg^{2+} probably because Ca^{2+} desplaces Mg^{2+} from the activating site without replacing it in its effects. From the intercept at the ordinate the value of K_{Mg} at zero Ca^{2+} concentration can be calculated to be 19.7 μ g. The apparent dissociation constant for Ca^{2+} of the site from which Ca^{2+} displaces Mg^{2+} calculated from the intercept at the abscissa is 18.3 μ M.

Essentially similar results were obtained when Ca^{2+} -ATPase activity was measured under conditions identical to those used for the experiment in Fig. 7 except that the concentration of ATP was $1000~\mu M$ instead of $20~\mu M$ (experiment not shown), indicating that combination of Mg^{2+} and its activating site is independent of ATP. It is worth to point out that all the curves in Fig. 7 have the same origin showing that in the absence of Mg^{2+} increasing from 50 to $1000~\mu M$ the concentration of Ca^{2+} is without effect on Ca^{2+} -ATPase activity.

Interaction of Ca²⁺ and Mg²⁺ with the transport site

Fig. 8A shows results of an experiment in which Ca²⁺-ATPase activity was measured as a function of Ca²⁺ concentration in media containing 20 µM ATP and different concentrations of Mg²⁺ calculated as in the experiment of Fig. 6. In a nominally Mg²⁺-free medium there is a small but significant stimulation of Ca2+-ATPase activity by Ca^{2+} which is maximum at about 10 μ M Ca^{2+} . As the concentration of Mg²⁺ raises, the increase in activity due to Ca²⁺ is more apparent and continues beyond 10 µM Ca²⁺. All curves can be adjusted by Michaelis-Menten-like equations. Fig. 8B shows that the maximum effect of Ca²⁺ increases along a hyperbolic curve which levels off at about 70 µM Mg²⁺. When the best fitting values of K_{C_3} are plotted against Mg²⁺ concentrations, they fall on a single straight line of positive slope (see Fig. 8B) suggesting competition between Mg²⁺ and Ca²⁺ probably because Mg²⁺ displaces Ca2+ from the transport site. By extrapolating the graph to the ordinate, the value of K_{Ca} at 0 mM Mg²⁺ can be calculated to be $1.39 \pm 0.11 \mu M$. The apparent dissociation con-

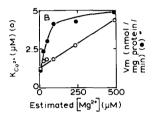


Fig. 8. ${\rm Ca^{2^+}}$ -ATPase activity as a function of ${\rm Ca^{2^+}}$ concentration (log scale) in the presence of 0 (\odot); 20 (\bullet); 40 (\triangle), 87 (∇) and 480 (\triangle) $\mu{\rm M}$ Mg²⁺. Membranes were prepared by the procedure of Garrahan et al. [6] modified as described in Materials and Methods. Other experimental conditions as in Fig. 6. For each Mg²⁺ concentration a Michaelis-Menten equation was adjusted by non-linear regression.

stant for Mg²⁺ calculated from the intercept at the abscissa, is 240 μ M. Similar values were obtained at 1000 μ M ATP, a result that gives further support to the idea that Mg²⁺ displaces Ca²⁺ from the enzyme rather than from ATP.

Discussion

Most of the reactions catalyzed by the red cell membrane Ca²⁺-ATPase are activated by Mg²⁺ at concentrations that lie in the micromolar range and are therefore close to the concentration of the Mg²⁺ that is present as a contaminant in suspensions of membranes in isotonic salt solutions. As a consequence of this it is difficult to study the effects of this cation on the enzymatic activities of the Ca²⁺-ATPase.

In the present study magnesium that might remain associated with the membranes was removed by incubating and washing the membranes in solutions containing 1 mM CDTA. Contaminant Mg²⁺ in the solutions was reduced in part by decreasing the concentration of the inorganic salts, but mainly by the inclusion of a strong chelator as CDTA in the reaction media. The use of chelators to remove Mg²⁺ from solutions that also contain Ca²⁺ is hampered by the fact that there is no chelator that binds Mg²⁺ more strongly than Ca²⁺. This difficulty was overcome using media containing 5 mM CDTA and just enough of CaCl₂ as to give a concentration of free Ca²⁺ of 1 μ M. Under these conditions, using the values of dissociation constants given under Materials and Methods, it can be calculated that if contaminant magnesium were 20 µM, the concentration of free-Mg²⁺ will be less than 0.1 μ M.

To test the validity of this calculation under our experimental conditions, we looked for the presence of minute amounts of Mg^{2+} in the CDTA-media taking advantage of the known fact that both the overall activity and the Na⁺-dependent phosphorylation [16] of the (Na⁺ + K⁺)-ATPase require Mg^{2+} with high apparent affinity ($K_{0.5}$ about 5 μ M) [17]. Results showed that in CDTA-media these activities are absent unless MgCl_2 is added. This strongly suggests that CDTA-media are indeed free of Mg^{2+} .

Results in this paper showing phosphorylation of the Ca2+-ATPase in CDTA-media might mean either that no site has to be occupied by Mg²⁺ for this reaction to take place or that Mg2+ can be replaced with other cation from the incubation media. If the second alternative were taken for granted, Ca²⁺ would seem to be the most likely candidate to substitute for Mg²⁺. If this were so, when no Mg²⁺ is present phosphorylation would require not only the binding of Ca²⁺ at the transport site with high affinity but also at the Mg²⁺ site with much lower apparent affinity. This view is supported by the experiments, which confirm previous findings by others [18], showing that the apparent dissociation constant for Ca²⁺ during promotion of phosphorylation raises from 2 μM in media with Mg²⁺ to 60 µM in media without Mg²⁺. Additional evidence for the substitution of Mg²⁺ by Ca²⁺ is provided by the experiments in this paper which show that if the concentration of Ca^{2+} is sufficiently increased, the $t_{1/2}$ for phos-

phorylation in the absence of Mg²⁺ becomes similar to that observed in the presence of Mg²⁺. After the findings discussed above, our previous view that Mg²⁺ is not needed for phosphorylation [2] has to be modified in the sense that catalysis of phosphorylation needs the Ca²⁺-ATPase to bind Ca²⁺ at the transport site and Mg²⁺ at an activating site, and that Ca2+ is able to replace Mg2+ at this site. Under the conditions that prevail in the cytosol of a normal cell (about 0.4 mM Mg²⁺ and 0.1 µM Ca²⁺) the catalytically active units of the Ca²⁺-ATPase will be predominantly those with Ca²⁺ at the transport site and Mg²⁺ at the activating site. The ability of Ca²⁺ to replace Mg²⁺ during phosphorylation is shared by other cation-transport ATPases. In fact, Ca2+ replaces Mg²⁺ as a cofactor in the Na⁺-dependent phosphorylation of the $(Na^+ + K^+)$ -ATPase [11,12,19] and, it is also known that when suspended in media with Mg²⁺, two Ca²⁺ bind to the transport sites of the Ca²⁺-ATPases of sarcoplasmic reticulum and that a third Ca²⁺ binds if Mg²⁺ is removed [20]. Since this enzyme is phosphorylated by ATP in the absence of added Mg²⁺ [21], it seems likely that the site for the third Ca2+ is the site which normally binds Mg2+. This view is supported by the observation that the third Ca²⁺ is easily exchangeable [22].

A $(Ca^{2+} + Mg^{2+})$ -ATPase activity which depends on the association of spectrin with red cell membranes and is unrelated to the Ca²⁺ pump has been recently described [23]. It could be argued that the activities detected in the absence of Mg²⁺ belong to the spectrin-dependent ATPase rather than to the Ca2+-pump. This however does not seem to be the case since the phosphoenzyme made in media prepared with no MgCl2 has the same physicochemical properties as that made in media with MgCl₂ [2], and Mg²⁺-depleted membranes used for the experiments in this paper were prepared using a procedure that involved two 30 min long incubations at 37°C in media containing 1 mM CDTA, a procedure that should release most of the spectrin from the membranes [23]. The CDTA treatment will remove calmodulin from the membranes too. Villalobo et al. [24] have shown that in the absence of Mg2+ calmodulin is uneffective in increasing the activity and the affinity for Ca²⁺ of the Ca²⁺-ATPase. We have confirmed

these results in our laboratory and this is the reason why no exogenous calmodulin was added during the assays reported in this paper.

Previous work from this laboratory [1,2] has shown that Mg^{2+} acting at a site with $K_{0.5} = 80$ μM promotes the transition of the phosphoenzyme from a state with low (E₁P) to a state with high (E₂P) reactivity towards water, In our original proposals we have also provided evidence showing that it sufficed for Mg2+ to be present during or after phosphorylation to be fully effective in promoting the $E_1P \rightarrow E_2P$ transition [1]. Results in this paper show that the effects of Mg²⁺ on this reaction depend on the concentration of Ca2+ in a way that can be summarized as follows: (a) if Mg²⁺ is added after phosphorylation, 50 µM Ca²⁺ totally blocks the effects of Mg²⁺ on the conformational transition and this effect of Ca²⁺ cannot be surmonted by raising the concentration of Mg²⁺, while (ii) provided Mg²⁺ is added before phosphorylation, Ca2+ in concentrations as high as 5 mM is unable to prevent the activation of the $E_1P \rightarrow E_2P$ transition by Mg²⁺. These results are consistent with the idea that binding of Mg²⁺ stabilizes the dephosphoenzyme in a state from which Ca²⁺ cannot displace Mg²⁺, whereas binding of Ca²⁺ to E₁P stabilizes it in a state in which the sites for Mg²⁺ to activate the $E_1P \rightarrow E_2P$ reaction become unaccessible or unreactive to this cation.

Previous experimental evidence [25] and results in this paper show that Ca²⁺ at concentrations that completely inhibit in the conditions described above the activation of dephosphorylation by Mg²⁺, has no inhibitory effect on the overall Ca²⁺-ATPase activity. Moreover, from previous studies of this laboratory it is known that the overall activity is inhibited by Ca^{2+} with K_i values (1 and 10 mM for intracellular and extracellular Ca2+, respectively [26]) which are much higher that the concentrations of Ca2+ needed to block the effects of Mg²⁺ on dephosphorylation. It would seem therefore that the blockage by Ca2+ of the effects of Mg^{2+} on the $E_1P \rightarrow E_2P$ transition does not take place during the overall reaction cycle. The obvious explanation for this is that in media with relatively high concentrations of Ca²⁺, the binding of Mg²⁺ takes place when the enzyme is dephosphorylated, condition under which, as mentioned above, the interaction is not impeded by Ca²⁺. It is not yet possible to ascertain whether this is also the case under physiological conditions since the normal cytosolic concentration of Ca²⁺ is well below that needed to impede the interaction of Mg²⁺ with E₁P.

Results show that there is a very slow but significant ATPase activity in the absence of Mg²⁺. This activity depends on Ca²⁺ with an apparent affinity close to 1 µM making it likely that it is due to interaction of Ca²⁺ with the transport site only. Furthermore, raising the concentration of Ca²⁺ from 50 to 1000 µM, which according with the findings commented above should increase the rate of phosphorylation, has no effect on the hydrolysis of ATP by the ATPase in the absence of Mg²⁺. This suggests that the phosphorylation reaction is not rate limiting in the absence of Mg²⁺ and that stimulation of the overall reaction of the Ca²⁺-ATPase by Mg²⁺ has to be attributed to its participation in a reaction different from the phosphorylation of E₁ by ATP.

Observations in this and in previous papers [27,28] indicate that during steady-state ATP hydrolysis there is mutual displacement between Mg²⁺ and Ca²⁺ from their sites in the Ca²⁺ ATPase. These kind of interactions seem at first hand to be in contradiction with the apparent inability of Ca2+ to displace Mg2+ from the dephosphoenzyme and of Mg²⁺ to displace Ca²⁺ from the phosphoenzyme. Although we cannot discard the possibility that the cause of this apparent contradiction is that the effects reported in this paper take place in elementary steps that are not rate-limiting in the overall reaction, a simpler explanation for the discrepancy is to postulate that the mutual displacement between Ca²⁺ and Mg²⁺ takes place during elementary steps of the overall reaction which are not involved in the partial reactions we measured in this paper.

Stimulation of ATP hydrolysis by Mg^{2+} in media with 100 μ M Ca^{2+} takes place along a hyperbolic curve that is half-maximal at 87.8 ± 3.7 μ M Mg^{2+} , indicating that the effect of the cation is excerted at a single class of non-interacting sites. For the range of Ca^{2+} concentrations tested (50 to 1000 μ M), Ca^{2+} acts as a linear dead-end inhibitor of the effects of Mg^{2+} and the apparent dissociation constant for Mg^{2+} extrapolated to

zero Ca^{2+} concentration is $19.7 + 7.0 \mu M$, a value close to that reported by Stieger and Luterbacher [29] for the purified enzyme and about six times less than the apparent dissociation constant for the promotion of the $E_1P \rightarrow E_2P$ transition by Mg²⁺. Available experimental evidence does not allow to decide whether acceleration of phosphorylation, promotion of the $E_1P \rightarrow E_2P$ transition and acceleration of the overall reaction by Mg²⁺ takes place at a single or at two or even three different classes of site. The observed differences between the values of apparent affinity for Mg²⁺ during each of these processes may be caused by the different temperatures used during the assays and/or may express the well known fact that in complex multi-step reactions the apparent affinity for a ligand may vary depending on whether it is studied on the overall reaction or on a single elementary step.

Apart from the effects described above, results in this paper show that Mg^{2+} in a 0 to 500 μM concentration range behaves as a linear dead-end inhibitor of the effects Ca^{2+} at the transport site of the Ca^{2+} -ATPase. The apparent dissociation constant of Mg^{2+} for this effect is sufficiently low (200 μM) as to make it necessary to extrapolate Ca^{2+} activation curves to zero Mg^{2+} concentration in order to get real estimates for the apparent affinity for Ca^{2+} .

Experiments reported here also confirm previous reports [3,4] that the response of the Ca^{2+} ATPase to Mg²⁺ is biphasic, i.e., as Mg²⁺ concentration raises activation is followed by inhibition. Penniston [4] has proposed that inhibition by high concentrations of Mg²⁺ is caused by competitive displacement of Ca²⁺ from its site in the enzyme. Using the values of the apparent dissociation constants for activation by Ca^{2+} (1.39 μ M) and for competition of this effect by Mg²⁺ (200 um) obtained in the experiments reported in this paper, it can be calculated that in media with 100 μM Ca²⁺, inhibition by Mg²⁺, if excerted through the displacement of Ca²⁺, would take place with a K_i of about 13 mM. This value is not very different from the best fitting value of K_i (9.1 mM) we obtained by nonlinear regression. However, the curve that best fits our data predicts a substantial residual activity when the concentration of Mg²⁺ tends to infinity and this is not compatible with

simple linear dead-end inhibition. In view of this we cannot discard the possibility that the observed linear relation between the apparent dissociation constant for Ca²⁺ and the concentration of Mg²⁺ is an approximation which is only valid at relatively low concentrations of Mg²⁺ and that at higher concentrations the relation levels off tending to a constant maximum value. A response like this, which would imply that Mg²⁺ does not displace Ca²⁺ by simple competition but rather by driving the Ca²⁺-ATPase into a state with lower but not zero affinity for Ca2+, would explain the existence of the residual activity when Mg²⁺ concentrations tends to infinity. Unpublished results by A.J. Caride show that in the presence of pnitrophenyl phosphate, partial inhibition of the Ca²⁺-ATPase activity by Mg²⁺ is paralleled by activation of the Ca2+-phosphatase activity as if Mg²⁺ were able to drive the Ca²⁺-pump to a state characterized by low ATPase and maximum phosphatase activities.

References

- 1 Garrahan, P.J. and Rega, A.F. (1978) Biochim. Biophys. Acta 513, 59-65
- 2 Rega, A.F. and Garrahan, P.J. (1975) J. Membrane Biol. 22, 313-327
- 3 Graf, E. and Penniston, J.T. (1981) J. Biol. Chem. 256, 1587-1592
- 4 Penniston, J.T. (1982) Biochim. Biophys. Acta 688, 735-739
- 5 Gietzen, K., Tejka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81-88
- 6 Garrahan, P.J., Pouchan, M.I. and Rega, A.F. (1969) J. Physiol. (London) 202, 305-327
- 7 Jørgensen, P.L. (1974) Methods Enzymol. 32, 277-290
- 8 Glynn, I.M. and Chappell, J.B. (1964) Biochem. J. 99, 147-149
- 9 Kakiuchi, S., Sobue, K., Yamazaki, R., Kambayashi, J., Sakon, M. and Kosaki, G. (1981) FEBS Lett. 126, 203-207
- 10 Richards, D.E., Rega, A.F. and Garrahan, P.J. (1978) Biochim. Biophys. Acta 511, 194-201
- 11 Fukushima, Y. and Post, R.L. (1978) J. Biol. Chem. 253, 6853-6862
- 12 Huang, W.K. and Askari, A. (1982) Arch. Biochem. Biphys. 216, 741-750
- 13 Kratje, R.B., Garrahan, P.J. and Rega, A.F. (1983) Biochim. Biophys. Acta 731, 40-46
- 14 Lündahl, P. (1975) Biochim. Biophys. Acta 379, 304-316
- 15 Rossi, R.C. and Garrahan, P.J. (1985) in The Sodium Pump (Glynn, I. and Ellory, C., eds.), pp. 443-455, The Company of Biologists Ltd., Cambridge, U.K.
- 16 Fahn, S., Koval, G.J. and Albers, W.R. (1968) J. Biol. Chem. 243, 1993–2002

- 17 Schuurmans Stekhoven, F.M.A.H. and Bonting, S.L. (1981) in Membrane transport (Bonting, S.L. and De Pont, J.J.H.H.M., eds.), pp. 159-182, Elsevier/North-Holland Biomedical Press, Amsterdam
- 18 Lichtner, R. and Wolf, H.U. (1980) Biochim. Biophys. Acta 598, 472-485
- 19 Tobin, T., Akera, T. and Brody, T.M. (1974) Ann. N.Y. Acad. Sci. 242, 120–132
- Shigekawa, M., Wakabayashi, S. and Nakamura, H. (1983)
 J. Biol. Chem. 258, 14157-14161
- 21 Yamada, S. and Ikemoto, N. (1980) J. Biol. Chem. 255, 3108-3119
- 22 Wakabayashi, S. and Shigekawa, M. (1984) J. Biol. Chem. 259, 4427-4436

- 23 Baskin, G.S. and Langdon, R.G. (1981) J. Biol. Chem. 256, 5428-5435
- 24 Villalobo, A., Brown, L. and Roufogalis, B.D. (1986) Biochim. Biophys. Acta 854, 9-20
- 25 Rega, A.F. and Garrahan, P.J. (1986) The Calcium Pump of Plasma Membranes CRC Inc. Boca Raton
- 26 Kratje, R.B., Garrahan, P.J. and Rega, A.F. (1985) Biochim. Biophys. Acta 816, 365-378
- 27 Klinger, R., Wetzker, R., Fleisher, I. and Frunder, H. (1980) Cell Calcium 1, 229–240
- 28 Schatzmann, H.J., Bürgin, H., Luterbacher, S., Stieger, J. and Rossi, J.P. (1982) Horm. Cell Regul. 6, 13-25
- 29 Stieger, J. and Luterbacher, S. (1981) Biochim. Biophys. Acta 641, 270–275